Markov Chains , Coupling , Stationary Distribution

نویسنده

  • Eric Vigoda
چکیده

In this lecture, we will introduce Markov chains and show a potential algorithmic use of Markov chains for sampling from complex distributions. For a finite state space Ω, we say a sequence of random variables (Xt) on Ω is a Markov chain if the sequence is Markovian in the following sense, for all t, all x0, . . . , xt, y ∈ Ω, we require Pr(Xt+1 = y|X0 = x0, X1 = x1, . . . , Xt = xt) = Pr(Xt+1 = y|Xt = xt).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 17 Lecturer : Anna Karlin Scribe : Eric

Coupling is a useful tool in the analysis of the mixing time of Markov chains. The basic idea is that a Markov chain that is initialized to some arbitrary distribution can be compared via coupling with another Markov chain that is initialized to the stationary distribution. The two chains then progress simultaneously, and the distance between the two chains at any time indicates how close the r...

متن کامل

The Randomness Recycler Approach to Perfect Sampling

1. The Randomness Recycler versus Markov chains At the heart of the Monte Carlo approach is the ability to sample from distributions that are in general very difficult to describe completely. For instance, the distribution might have an unknown normalizing constant which might require exponential time to compute. In these situations, in lieu of an exact approach, Markov chains are often employe...

متن کامل

2006 Coupling from the Past

We saw in the last lecture how Markov chains can be useful algorithmically. If we have a probability distribution we’d like to generate random samples from, we design an ergodic Markov chain whose unique stationary distribution is the desired distribution. We then run the chain (i.e., start at an arbitrary state and evolve according to the transition matrix), until the process is at (or close t...

متن کامل

Concentration inequalities for Markov processes via coupling

We obtain moment and Gaussian bounds for general Lipschitz functions evaluated along the sample path of a Markov chain. We treat Markov chains on general (possibly unbounded) state spaces via a coupling method. If the first moment of the coupling time exists, then we obtain a variance inequality. If a moment of order 1+ ǫ of the coupling time exists, then depending on the behavior of the statio...

متن کامل

T - 79 . 5204 Combinatorial Models and Stochastic Algorithms

I Markov Chains and Stochastic Sampling 2 1 Markov Chains and Random Walks on Graphs . . . . . . . . . . . 2 1.1 Structure of Finite Markov Chains . . . . . . . . . . . . . 2 1.2 Existence and Uniqueness of Stationary Distribution . . . 10 1.3 Convergence of Regular Markov Chains . . . . . . . . . . 14 1.4 Transient Behaviour of General Chains . . . . . . . . . . 17 1.5 Reversible Markov Chains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006